102 research outputs found

    Comparative effectiveness of surgical versus nonoperative management of unilateral, nondisplaced, subaxial cervical spine facet fractures without evidence of spinal cord injury

    Get PDF
    Object. Facet joints are major stabilizers of cervical motion allowing for effortless and pain-free multidimensional cervical spine movements without significant linear or rotational translation, thus minimizing any chance for spinal cord or nerve root impingement. Unilateral, nondisplaced subaxial facet fractures do not meet the conventional criteria for spinal instability under physiological loads. Limited evidence indicates that even with no or minimal displacement, 20%-80% of these fractures fail nonoperative management. The risk factors for instability in isolated nondisplaced subaxial facet fractures remain uncertain. In this retrospective study of prospectively collected data, the authors attempted to identify the predictors of failure in the management of isolated, nondisplaced subaxial facet fractures admitted to their Level I trauma center over a 10-year period. Methods. Demographic, clinical, imaging, and follow-up data for 25 patients with unilateral nondisplaced subaxial facet fractures who were managed surgically (n = 10) or nonoperatively (n = 15) were statistically analyzed. Results. The mean age of the patients was 38 years, 19 were male, and 21 of the fractures were the result of either motor vehicle acciderits or falls. The mean motorscore on the American Spinal Injury Association scale was 99.2, and the mean Subaxial Injury Classification (SLIC) severity score was 3 (operated 3.5, nonoperated 2.3). Allen mechanistic classification included 22 compressive-extension Stage 1 and 2 distractive-extension Stage 1 fractures. Subaxial facet fractures involved C-7 in 17 patients (68%), C-6 in 7 (28%), and C-3 in 1 (4%). The anatomical plane of fracture through the lateral mass was sagittal in 12 patients, axial in 8, and coronal in 3 patients. Nondisplaced floating lateral mass injuries were noted in 2 patients. The mean instability score, considering 7 components of the discoligamentous complex on MRI, was 3.2 (operated 3.6, nonoperated 3.0). Ten (40%) of 25 patients in this investigation did not have successful management, 9 in the nonoperated and 1 in the operated group (p = 0.018). Unsuccessful management was significantly greater in younger patients (p = 0.0008), possibly indicating selection bias (p = 0.07, Wilcoxon ranksum test). Fracture plane, instability, and SLIC scores did not play a significant role in treatment failure in this study. Conclusions. In this study, surgery was superior to nonoperative management of isolated, nondisplaced, or minimally displaced subaxial cervical spine facet fractures

    Impact of Baseline Magnetic Resonance Imaging on Neurologic, Functional, and Safety Outcomes in Patients With Acute Traumatic Spinal Cord Injury

    Get PDF
    Study Design: Systematic review. Objective: To perform a systematic review to evaluate the utility of magnetic resonance imaging (MRI) in patients with acute spinal cord injury (SCI). Methods: An electronic search of Medline, EMBASE, the Cochrane Collaboration Library, and Google Scholar was conducted for literature published through May 12, 2015, to answer key questions associated with the use of MRI in patients with acute SCI. Results: The literature search yielded 796 potentially relevant citations, 8 of which were included in this review. One study used MRI in a protocol to decide on early surgical decompression. The MRI-protocol group showed improved outcomes; however, the quality of evidence was deemed very low due to selection bias. Seven studies reported MRI predictors of neurologic or functional outcomes. There was moderate-quality evidence that longer intramedullary hemorrhage (2 studies) and low-quality evidence that smaller spinal canal diameter at the location of maximal spinal cord compression and the presence of cord swelling are associated with poor neurologic recovery. There was moderate-quality evidence that clinical outcomes are not predicted by SCI lesion length and the presence of cord edema. Conclusions: Certain MRI characteristics appear to be predictive of outcomes in acute SCI, including length of intramedullary hemorrhage (moderate-quality evidence), canal diameter at maximal spinal cord compression (low-quality evidence), and spinal cord swelling (low-quality evidence). Other imaging features were either inconsistently (presence of hemorrhage, maximal canal compromise, and edema length) or not associated with outcomes. The paucity of literature highlights the need for well-designed prospective studies. © 2017, © The Author(s) 2017

    Sulfonylurea Receptor 1, Transient Receptor Potential Cation Channel Subfamily M Member 4, and KIR6.2:Role in Hemorrhagic Progression of Contusion

    Get PDF
    Altres ajuts: J.M.S is supported by grants from the Department of Veterans Affairs (I01BX002889), the Department of Defense (SCI170199), the National Heart, Lung and Blood Institute (R01HL082517) and the National Institute of Neurological Disorders and Stroke (NINDS) (R01NS060801; R01NS102589; R01NS105633); V.G. is supported by a grant from NINDS (NS061934).In severe traumatic brain injury (TBI), contusions often are worsened by contusion expansion or hemorrhagic progression of contusion (HPC), which may double the original contusion volume and worsen outcome. In humans and rodents with contusion-TBI, sulfonylurea receptor 1 (SUR1) is upregulated in microvessels and astrocytes, and in rodent models, blockade of SUR1 with glibenclamide reduces HPC. SUR1 does not function by itself, but must co-assemble with either KIR6.2 or transient receptor potential cation channel subfamily M member 4 (TRPM4) to form K (SUR1-KIR6.2) or SUR1-TRPM4 channels, with the two having opposite effects on membrane potential. Both KIR6.2 and TRPM4 are reportedly upregulated in TBI, especially in astrocytes, but the identity and function of SUR1-regulated channels post-TBI is unknown. Here, we analyzed human and rat brain tissues after contusion-TBI to characterize SUR1, TRPM4, and KIR6.2 expression, and in the rat model, to examine the effects on HPC of inhibiting expression of the three subunits using intravenous antisense oligodeoxynucleotides (AS-ODN). Glial fibrillary acidic protein (GFAP) immunoreactivity was used to operationally define core versus penumbral tissues. In humans and rats, GFAP-negative core tissues contained microvessels that expressed SUR1 and TRPM4, whereas GFAP-positive penumbral tissues contained astrocytes that expressed all three subunits. Förster resonance energy transfer imaging demonstrated SUR1-TRPM4 heteromers in endothelium, and SUR1-TRPM4 and SUR1-KIR6.2 heteromers in astrocytes. In rats, glibenclamide as well as AS-ODN targeting SUR1 and TRPM4, but not KIR6.2, reduced HPC at 24 h post-TBI. Our findings demonstrate upregulation of SUR1-TRPM4 and K after contusion-TBI, identify SUR1-TRPM4 as the primary molecular mechanism that accounts for HPC, and indicate that SUR1-TRPM4 is a crucial target of glibenclamide

    The Sub-axial Cervical Spine Injury Classification System (SLIC): A Novel Approach to Recognize The Importance of Morphology, Neurology and Integrity of the Disco-ligamentous complex

    Get PDF
    Abstract Background Context Despite technological advances in spine surgery, classification of sub-axial cervical spine injuries remains largely descriptive, lacking standardization and any relationship to prognosis or clinical decision making. Purpose The primary purpose of this paper is to define a classification system for sub-axial cervical spine trauma that conveys information about injury pattern and severity as well as treatment considerations and prognosis. The proposed system is designed to be both comprehensive and easy to use. The secondary objective is to evaluate the classification system in the basic principles of classification construction, namely reliability and validity. Study Design/Setting Derivation of the classification was from a synthesis of the best cervical classification parameters gleaned from an exhaustive literature review and expert opinion of experienced spine surgeons. Multi-center reliability and validity study of a cervical classification system using previously collected CT, MRI, and plain film x-ray images of sub-axial cervical trauma. Methods Important clinical and radiographic variables encountered in sub-axial cervical trauma were identified by a working section of the Spine Trauma Study Group (STSG). Significant limitations of existing injury classification systems were defined and addressed within the new system. It was then introduced to the STSG and applied to 11 cervical trauma cases selected to represent a spectrum of subaxial injury. Six weeks later, the cases were randomly re-ordered and again scored using the novel classification system. Twenty surgeons completed both intervals. Inter-rater and intra-rater reliability and several forms of validity were assessed. For comparison, the reliability of both the Harris and the Ferguson & Allen systems were also evaluated. Results Each of three main categories (injury morphology; disco-ligamentous complex integrity; and neurological status) identified as integrally important to injury description, treatment, and prognosis was assigned an ordinal score range, weighted according to its perceived contribution to overall injury severity. A composite injury severity score was modeled by summing the scores from all three categories. Treatment options were assigned based upon threshold values of the severity score. Inter-rater agreement as assessed by ICC of the DLC, Morphology, and Neurological Status scores was 0.49, 0.57, and 0.87, respectively. Intra-rater agreement as assessed by ICC of the DLC, Morphology, and Neurological Status scores was 0.66, 0.75, and 0.90, respectively. Raters agreed with treatment recommendations of the algorithm in 93.3 % of cases, suggesting high construct validity. The reliability if the SLIC treatment algorithm compared favorably to the earlier classification systems of Harris and Ferguson & Allen. Conclusions The Sub-axial Injury Classification (SLIC) and Severity Scale provides a comprehensive classification system for sub-axial cervical trauma, incorporating pertinent characteristics for generating prognoses and courses of management. Early data on validity and reliability are encouraging. Further testing is necessary before introducing the SLIC score into clinical practice

    A prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury.

    Get PDF
    A prospective, multicenter phase I trial was undertaken by the North American Clinical Trials Network (NACTN) to investigate the pharmacokinetics and safety of, as well as obtain pilot data on, the effects of riluzole on neurological outcome in acute spinal cord injury (SCI). Thirty-six patients, with ASIA impairment grades A-C (28 cervical and 8 thoracic) were enrolled at 6 NACTN sites between April 2010 and June 2011. Patients received 50 mg of riluzole PO/NG twice-daily, within 12 h of SCI, for 14 days. Peak and trough plasma concentrations were quantified on days 3 and 14. Peak plasma concentration (Cmax) and systemic exposure to riluzole varied significantly between patients. On the same dose basis, Cmax did not reach levels comparable to those in patients with amyotrophic lateral sclerosis. Riluzole plasma levels were significantly higher on day 3 than on day 14, resulting from a lower clearance and a smaller volume of distribution on day 3. Rates of medical complications, adverse events, and progression of neurological status were evaluated by comparison with matched patients in the NACTN SCI Registry. Medical complications in riluzole-treated patients occurred with incidences similar to those in patients in the comparison group. Mild-to-moderate increase in liver enzyme and bilirubin levels were found in 14-70% of patients for different enzymes. Three patients had borderline severe elevations of enzymes. No patient had elevated bilirubin on day 14 of administration of riluzole. There were no serious adverse events related to riluzole and no deaths. The mean motor score of 24 cervical injury riluzole-treated patients gained 31.2 points from admission to 90 days, compared to 15.7 points for 26 registry patients, a 15.5-point difference (p=0.021). Patients with cervical injuries treated with riluzole had more-robust conversions of impairment grades to higher grades than the comparison group

    Establishing Diagnostic Criteria for Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 3].

    Get PDF
    STUDY DESIGN: Narrative review. OBJECTIVES: To discuss the importance of establishing diagnostic criteria in Degenerative Cervical Myelopathy (DCM), including factors that must be taken into account and challenges that must be overcome in this process. METHODS: Literature review summarising current evidence of establishing diagnostic criteria for DCM. RESULTS: Degenerative Cervical Myelopathy (DCM) is characterised by a degenerative process of the cervical spine resulting in chronic spinal cord dysfunction and subsequent neurological disability. Diagnostic delays lead to progressive neurological decline with associated reduction in quality of life for patients. Surgical decompression may halt neurologic worsening and, in many cases, improves function. Therefore, making a prompt diagnosis of DCM in order to facilitate early surgical intervention is a clinical priority in DCM. CONCLUSION: There are often extensive delays in the diagnosis of DCM. Presently, no single set of diagnostic criteria exists for DCM, making it challenging for clinicians to make the diagnosis. Earlier diagnosis and subsequent specialist referral could lead to improved patient outcomes using existing treatment modalities

    Developing Peri-Operative Rehabilitation in Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 6]: An Unexplored Opportunity?

    Get PDF
    Study Design Narrative review. Objective Degenerative cervical myelopathy is one of the most frequent impairments of the spinal cord encountered internationally in adults. Currently, surgical decompression is the recommended treatment for people with DCM (PwCM) presenting with moderate to severe symptoms or neurological deficits. However, despite surgical intervention, not all patients make a complete recovery due to the irreversible tissue damage within the spinal cord. The objective of this review is to describe the state and gaps in the current literature on rehabilitation for PwCM and possible innovative rehabilitation strategies. Methods Literature search. Results In other neurological disorders such as stroke and acute traumatic spinal cord injury (SCI), timely and strategic rehabilitation has been shown to be indispensable for maximizing functional outcomes, and it is imperative that appropriate perioperative rehabilitative interventions accompany surgical approaches in order to enable the best outcomes. In this review, the current state of knowledge regarding rehabilitation for PwCM is described. Additionally, various therapies that have shown to improve outcomes in comparable neurological conditions such as stroke and SCI which may be translated to DCM will be reviewed. Conclusions We conclude that locomotor training and arm/hand therapy may benefit PwCM. Further, we conclude that body weight support, robotic assistance, and virtual/augmented reality therapies may be beneficial therapeutic analogs to locomotor and hand therapies

    Mortality in ASIA Impairment Scale grade A to D Patients With Odontoid Fracture and Magnetic Resonance Imaging Evidence of Spinal Cord Injury

    Get PDF
    Odontoid fractures are common, often presenting in the elderly after a fall and infrequently associated with traumatic spinal cord injury (tSCI). The goal of this study was to analyze predictors of mortality and neurological outcome when odontoid fractures were associated with signal change on magnetic resonance imaging (MRI) at admission. Over an 18-year period (2001-2019), 33 patients with odontoid fractures and documented tSCI on MRI were identified. Mean age was 65.3 years (standard deviation [SD] = 17.2), and 21 patients were male. The mechanism of injury was falls in 25 patients, motor vehicle accidents in 5, and other causes in 3. Mean Injury Severity Score (ISS) was 40.5 (SD = 30.2), Glasgow Coma Scale (GCS) score was 13 (SD = 3.4), and American Spinal Injury Association (ASIA) motor score (AMS) was 51.6 (SD = 42.7). ASIA Impairment Scale (AIS) grade was A, B, C, and D in 9, 2, 3, and 19 patients, respectively. Mean intramedullary lesion length was 32.3 mm (SD = 18.6). The odontoid peg was displaced ventral or dorsal in 15 patients. Twenty patients had surgical intervention: anterior odontoid screw fixation in 7 and posterior spinal fusion in 13. Eleven (33.3%) patients died in this series: withdrawal of medical care in 5; anoxic brain injury in 4; and failure of critical care management in 2. Univariate logistic regression indicated that GCS score (p\u3c0.014), AMS (p\u3c0.002), AIS grade (p\u3c0.002), and ISS (p\u3c0.009) were risk factors for mortality. Multi-variate regression analysis indicated that only AMS (p\u3c0.002) had a significant relationship with mortality when odontoid fracture was associated with tSCI (odds ratio, 0.963; 95% confidence interval, 0.941–0.986)
    • …
    corecore